

Muscle deoxygenation kinetics in cycling time trials

Peter Leo, Matthias Hovorka, Alfred Nimmerichter, Bernhard Prinz

University of Applied Sciences Wiener Neustadt, Faculty of Training and Sports Sciences

Science & Cycling Conference 2018 Nantes, France

Background

- Muscle deoxygenation kinetics (VO_{2m}) of deoxygenated hemoglobin
- Measured by near infrared spectroscopy (NIRS)
- Information about the oxygen extraction rate at the muscular level
- No studies have yet shown the effects of \dot{VO}_{2m} during cycling time trials in field conditions
- The aim of this study is to investigate changes in \dot{VO}_{2m} derived from deoxygenated hemoglobin in endurance trained athletes

Oxygen Dissociation Curve

- O₂ binding capacity of hemoglobin (Hb) via iron proteins
- High levels of PO₂ in the lungs (100 mmHg)
- Low levels of PO₂ in the muscles (40 mmHg)
- Alterations in the affinity of binding O₂ from lungs to muscle (Bohr effect)

Gomez-Cambronero, J. (2001)

Oxygen Binding

- Step-wise reduction in PO₂ enables faster
 off-loading of remaining oxygen molecules
- Oxygen saturation decreases
- Ratio of oxy- vs. deoxyhemoglobin shifts
- Triggers: pH, temperature, 2,3-BPG, PCO₂
- Hemoglobin as a buffer (Haldane effect)

Gomez-Cambronero, J. (2001)

Muscle Deoxygenation Kinetics (VO_{2m})

Adopted from: Nimmerichter & Wartbichler (2017)

- Amplitude AMP (%)
- Time Delay TD (s)
- Time constant τ (s)
- Mean Response Time MRT (s)
- Resolved by nonlinear regression

Methodology & Statistics

- Thirteen trained cyclists and triathletes
- Graded incremental Exercise Test in the lab (60-20-1)
- Cycling time trials lasting 10-, 4- and 1-min in flat conditions
- Relative changes in \dot{VO}_{2m} were recorded on the right vastus lateralis muscle with a portable continuous-wave NIRS device
- \dot{VO}_{2m} was characterized by a single exponential model in GraphPad
- A repeated measure one way ANOVA was used to compare power output and muscle deoxygenation parameters during 10-, 4and 1-min durations

Results: Subjects (N=13)

Parameter	Mean ± SD
Age	31 ± 7 yrs
Height	181.4 ± 4.7 cm
Pmax	406 ± 39 W
VO _{2max}	67.85 ± 2.99 ml.min ⁻¹ .kg ⁻¹

Results: Power Output

Time Trials	Mean ± SD of TT	Results
10min TT	352 ± 45 W*	
4min TT	385 ± 49 W*	p=0.001
1min TT	525 ± 73 W*	

• Significant differences in power output in the 10-, 4- and 1-min time trials (p=0.001)

Results: Cadence (CAD)

Time Trials	Mean ± SD of CAD	Results
10min TT	90 ± 3 rpm	
4min TT	89 ± 4 rpm*	n = 0.05
1min TT	93 ± 5 rpm*	p = 0.05

• Significant differences in CAD between 4- and 1-min time trials (p=0.05)

Results: Amplitude (AMP)

Time Trials	Mean ± SD of AMP	Results
10min TT	78.20 ± 8.42 %*	
4min TT	74.99 ± 6.12 % [#]	p < 0.05
1min TT	89.16 ± 6.82 %*#	

• Significant differences in the AMP between 10- and 1-min (p=0.022) as well as 4and 1-min time trials (p=0.006)

Results: Time Delay (TD)

Time Trials	Mean ± SD of TD	Results
10min TT	9.54 ± 2.07 s*	
4min TT	6.30 ± 3.02 s	p < 0.05
1min TT	3.65 ± 1.71 s*	

• Significant differences in the TD between 10- and 1-min time trials (p=0.001)

Results: Mean Response Time (MRT)

Time Trials	Mean ± SD of ($ au$)	Results
10min TT	13.45 ± 2.39 s*	
4min TT	10.07 ± 2.86 s	p < 0.05
1min TT	6.85 ± 1.90 s*	

• Significant differences in the MRT between 10- and 1-min time trials (p=0.001)

Discussion

- VO_{2m} as a response parameter for exercise tolerance during maximal effort cycling
- Alterations in \dot{VO}_{2m} parameter estimates amplitude, time delay and mean response time between different time trial durations
- Potential influence of cycling cadence as confirmed in previous studies Boone et al. (2015), Zorgati et al. (2015)
- Microvascular response is very sensitive to alterations in exercise intensity especially at the transition from rest to work
- We recommend further ecological validity of NIRS in field conditions to confirm our results

Thank you for your attention

