Training and Sports Sciences

Effects of flat and uphill cycling on the power duration relationship

Matthias Hovorka, Peter Leo, Alfred Nimmerichter

Introduction:

- Coaches' experience: power output during uphill cycling is higher than during flat cycling
- Just a few studies regarding this topic controversial results
- Lots of influencing factors on power output (upper body position, cadence)
- Aim of the study: To investigate possible differences between flat and uphill cycling regarding CP/W[′]

(Barker et al., 2006; Bouillod et al., 2017; Carnevale & Gaesser, 1991; Gnehm et al., 1997; Jobson et al., 2008; Nielsen et al., 2004; Nimmerichter et al., 2012; Sassi et al., 2005; Welbergen & Clijsen, 1990)

Methods:

- 13 endurance-trained subjects (experienced in TT and field tests learning effect)
- Graded Exercise Test (GXT)
- Time trials lasting 10', 4' and 1' during flat (1.0% incline) and uphill (10.0% incline) conditions
- Tests within 10 days
- Standardized warm-up
- 26" MTB SRM power meter (standardized upper body position)
- Cadence: 80 100 RPM

Training and Sports Sciences

Methods:

- Inverse model for CP/W' estimation ($P = \frac{W'}{t} * CP$)
- Paired t-test
- Bland-Altman Plots

Results:

- GXT (age: 32 ± 7 years; weight: $74,6 \pm 7,4$ kg; maximum power output: 406 ± 39 watts; maximum oxygen uptake: $67,9 \pm 3,0 \frac{mL}{\min*kg}$)
- Comparison between uphill and flat cycling (CP and W')

Parameter	Model	Mean difference uphill and flat	Results	
СР	Inverse	3 ± 15 watts	T ₁₂ =0.677; p=0.551	n.s.
W´	Inverse	1750 ± 1740 joule	T ₁₂ =3.626; p=0.003	S.

Results:

• Comparison between uphill and flat cycling (power output during the TT)

Parameter	TT duration	Mean difference uphill and flat	Results	
	10 minutes	8 ± 14 watts	T ₁₂ =2.026; p=0.066	n.s.
Power output	4 minutes	7 ± 15 watts	T ₁₂ =1.751; p=0.105	n.s.
	1 minute	32 ± 27 watts	T ₁₂ =4.397; p=0.001	S.

Discussion:

- Results indicate no sign. difference between flat and uphill cycling regarding CP
- Individual differences revealed by the Bland-Altman Plot
 - 3 participants showed a "practical relevant" higher CP during uphill conditions
 - 1 participant showed a "practical relevant" higher CP during flat conditions
 - Practical relevant = difference greater than 5 %

Discussion:

- Results indicate a significant difference between flat and uphill cycling regarding W[´]
- Sign. difference in power output during the 1 minute trial indicates a higher W[´] during uphill cycling
 - High power output during short-duration work is related to a high W $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
- Reliability in field conditions questionable

(Karsten et al., 2017; Karsten et al., 2014; Karsten et al., 2015)

Take home message:

- No significant difference between flat and uphill cycling regarding CP
- Consider individual differences
- Influence of the training regime

Training and Sports Sciences

Thank you for your attention.