

Centre for Elite Sports Research

SIAT – Centre for Sport Facilities and Technology

On the effect of time-trial specific position - Physiology and kinematics.

Knut Skovereng Post doctor Centre for Elite Sports Research Norwegian University of Science and Technology

Background

 Using a more aerodynamic position is beneficial for performance if all else is held equal.

- However, utilizing this position influence several factors such as,
 - higher blood lactated [Grappe et al. 1998].
 - influence muscle recruitment [Chapman et al. 2008 and Dorel et al. 2009]

Purpose

The purpose of the present pilot study, was to investigate the effect of different time trial specific cycling positions on kinematic and physiological variables in elite cyclists.

Methods

 Three elite cyclists with varying experience in time trials were included.

• A high and a low time trial position and an upright position.

• 5 minute stages at approximately 95% of their FTP with a freely chosen cadence.

Methods

- Time trial bike with adjustable stem.
 - Computrainer
- Oxygen consumption
 - Jaeger Oxycon pro
- Blood lactate
 - Biosen c-sport
- Kinematic measurements
 - Oqus 3D motion capture system with 6 cameras
- Near-infrared Spectroscopy
 - 3 Artinis Portamon optodes

Results

Work rate (w)	340 ± 15.8
Work rate (w·kg ⁻¹)	4.72 ± 0.19
VO ₂ (ml⋅min⁻¹)	4938 ± 153
VO ₂ (ml·min ⁻¹ ·kg ⁻¹)	68.6 ± 2.1
Lactate (mmol·L-1)	7.5 ± 1.6
RPE	13.8 ± 1.5

Oxygen consumption and gross efficiency

Blood lactate

In preparation

Kinematics

•

- Heel-drop and forward movement on the saddle.
 Contrasts the findings of Chapman et al. [2008]
- These actions reduce the effect of lowered position but is it enough?

Near-infrared spectroscopy

Deoxy-haemoglobin

Oxy-haemoglobin

Oxygensaturation

Concluding remarks

- A too low time trial position leads to reduce blood volume in the tissue and reduced amount of oxygenated haemoglobin.
- Changes in movement patters work to limit the effects of a low position, but may not be sufficient.
- Possibilities for extension in the future with a performance measure.

Acknowledgements

Thank you to Ola Elfmark for organising the project, Lars Morten Bardal, the EIT-group and patient cyclists for participation in the data-collection and David McGhie for data-collection, analysis and interpretations.

NTNU Centre for Elite Sports Research

Image: NTNU

SIAT – Centre for Sport Facilities and Technology

Practical application

 "the low time trial position was lower then what I normally use, but I would be able to go lower".