Data-driven Bike Fitting

Automatic bike fitting based on novel data-driven decision making processes
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TRADITIONAL BIKE FITTING

During bike fitting sessions, the optimal bicycle rider position is determined by expert scoring.
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TRADITIONAL BIKE FITTING: PROBLEMS

Expert subjectivity Bike SIZIHg

Time-consuming, labor-intensive process.

Comfort | Performance | Injury prevention

scattered & random remedies
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Subjectivity within the group of experts

- different bikefitters
- different bikefitting systems
- different “optimal” position?
- knowledge
- background
- system
- analyzing differences
- what is really optimal?



SOLUTION — DATA-DRIVEN BIKE FITTING

CROWD OF BIKE FITS

COLLECTIVE DATA ANALYSIS
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OBJECTIVE DATA-DRIVEN BIKE FITTING



SOLUTION — DATA-DRIVEN FITTING

Efficient, accurate, fast and user-friendly fitting

FOCUS #1 - data processing

CHALLENGE

How to make sense
of the data for non-experts?

USER MONITORING

FOCUS #2 - user feedback/experience
DATA PROCESSING

COMMERCIALIZE

SENSOR
OPTIMIZATIONS

FOCUS #3 - sensor optimizations
(complementary activity of Bioracer Motion)




SOLUTION — DATA-DRIVEN FITTING

Feature engineering vs. feature learning

Annotated datasets and meta-data

FEATURE ENGINEERING (traditional ML — expert-driven)
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(e.qg. deep convolutional neural networks )

FEATURE LEARNING (data-driven)
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DATA-DRIVEN FITTING — IMPACT

valorization
5
4
3
2 — Expert-driven bike fitting (current
cost-effectivenes accuracy system)
1
— Data-driven bikefitting
0

— Data-driven bike fitting with sensor
optimizations

egase of use effiency
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