A pedaling force vector can be
represented by the sum of three
elemental force vector waveforms.
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Introduction : Background

* Measurement of pedaling force vectors
(1) cycle trainer  (2) pedal crank (3) pedal

pedaling analyzer pedaling monitor P1 Pedal Power Meter
(Pioneer) (Powertap)

Pedaling force vector
tangential direction, radial direction




Introduction: indexes of pedaling
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« Mechanical pedaling characteristics can be calculated.

« These indicators are not based on body movement.



Introduction : Purpose

A previous study:

schematic representation of
the 3 muscle synergies

u B synergy # 1

N 3 = ] 120 B sy nergy #2
cycle (% of lotal cycle) cycle (% of total cycle) cycle (% of total cycle) synergy # 3

A synergy activation coefficients (C)

#1 #2 #3

B

EMG signals of the lower limb muscles demonstrated that pedaling is accomplished by
combining three similar muscle synergies.

(Hug F., Turpin N., Guével A. and Dorel S., J Appl Physiol, 108(6) 1727-36. 2010)

<~ >

Purpose:

« To analyze the pedaling force vector waveform based on
biomechanical pedaling motion.

* Plot the pedal force vector waveform resulting from the sum of
elemental force vector waveforms.




Methods: measuring system

pedaling analyzer system (Bikefitting.com)

cycle computer unit

pedaling analyzer sensor unit

Pedaling force vector data was obtained every 15 degrees
Pedaling force can be obtain using the tangential and radial direction




Methods: procedure & data analysis

Procedure:

Two participants ( No. 1: former professional, No. 2: top-level amateur cyclist)
Load power : 100, 200, 300 W
Cadence : 70, 90, 110 rpm
Pedaling action : normal, spinning, pulling, and pushing and pulling
Saddle position: back (5 mm) forward (10 mm), up (3 mm) down (5, 10 mm)

200 W and 90 rpm set as reference value

Data analysis:

Pedaling force vector was averaged at each pedaling condition for 60 s.
Pedaling vector data were expressed as the sum of several elemental vectors.
« Common elemental vector waveforms and parameters were determined

« RMS error between the sum of the elemental vector waveforms and the
original vector data was minimized

« Amplitude and phase angle differences were changed
« The pedaling vector data and parameters were plotted




Tangential force normalized by mean value
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Results: force vector resolution (example)

tangential direction radial direction

| 5
- =15t component § 4 =13t component
oV — m
* 7N = 2nd component z = 2nd component
. / \ model function | | E 3 MR ———3rd component
+ measured data = £ *Ne model function
4 - /\ + measured data
N
/ 0\ % / .
P AN E .
+ g y \\
/ /\\ +* \ 3 Py
e " ,--'"'-——-—-—\ / g 0 I \ p—
\ k4 * - \ 3
J S . \ B *
A = . o
——— 81 S
-2
0 90 180 270 360 0 90 180 270 360
Crank angle (degree) Crank angle (degree)

Tan(0)=T, {1+ A f,(0—6,)+ A, f,(0-6,)) No. 2: 200 W 90 rpm

Rad(&):To{Bo+Blgl(9—€01)+ B,9,(0-,)+ 8393(9_(03)}

Tangential : sum of two waveform components
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Results: force vector resolution (power & cadence)

Tangential force normalized by mean value
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Results: force vector resolution (power & cadence)

Tangential force normalized by mean value
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Results: force vector resolution (power & cadence)

Tangential force normalized by mean value
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Results: force vector resolution (power & cadence)

Tangential force normalized by mean value

Tangential force normalized by mean value
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Results: force vector resolution (pedaling action)
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Results: amplitudes scatter diagram of components
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Amplitude of 1st component

 Using this scatter diagram, it is possible to classify pedaling
characteristics.
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Results: amplitudes scatter diagram of components
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« Amplitude difference appears when power and cadence change.

 Peculiar change appears when the pedaling action is different.



Results: phase angle scatter diagram of components
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« Pedaling action : phase angle of the 1st component changes
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Conclusion:

 To analyze the pedaling force vector waveform based on
biomechanical pedaling motion

* The pedal force vector waveform by the sum of elemental force
vector waveforms.

As a result, the following became clear:

« The pedaling force vector components (tangential: 2 and radial: 3)
was represented by the sum of the elemental waveform components.

 This force may corresponds to the muscle behavior expressed by
three synergies.

 This study accounted for both of the waveform’s amplitude & phase
angle change.

Future:
* Investigate the difference between changes in the element waveform
and the muscle force assessment.
 Study the corresponding muscle force strength and pedaling action.
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