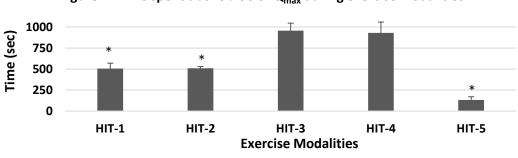
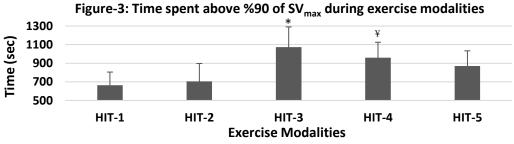

Science & Cuclins

VO_{2max} is one of the key factors for endurance development. Therefore, time spent at VO_{2max} (t_{spent}@VO_{2max}), central (t_{spent} at maximal cardiac output: t_{spent}@Q_{max}; t_{spent} at maximal stroke volume: t_{spent}@SV_{max}) and peripheral (t_{spent} at maximal arteriovenous O₂ difference: t_{spent}@avO2diff-max) components of VO2max throughout exercise, is very important to improve the aerobic power. Purpose of the present study was to examine the potential effects of five high intensity training (HIT) models on central and peripheral components of VO_{2max}. We analysed O₂ consumption (VO₂), cardiac output (Q), stroke volume (SV), heart rate (HR) and arteriovenous O₂ difference (a-vO_{2diff}) in different regimes of HIT during loading and recovery periods. Eight well-trained male competitive cyclists take part in the study (age: 22.1±3.1 years; body mass: 66.2±8.5 kg; height: 175.4±5.2 cm; body fat: 7.2%±1.1%; VO_{2max}: 64±5.61 mL·min⁻¹·kg⁻¹). Following familiarization sessions, VO_{2max} was determined, and then, maximal SV, HR, Q and avO_{2diff} (SV_{max}), (HR_{max}), (Q_{max}), (a-vO_{2diff max}) were evaluated using exercise intensities corresponding to 40 to 110% of VO_{2max} separately, by nitrous-oxide re-breathing (N_2O_{RB}) method. Thereafter, training models; HIT₁: 16 repetitions with power at ~110% of VO_{2max} (p@~110%VO_{2max}) for 45-sec with 1:1 work and recovery (w/r) ratio, intermittent model; HIT₂: 4 repetitions with $p@\sim93\%VO_{2max}$ for 3-min with 1:1 w/r ratio, intermittent model; HIT₃: alternating the power between VO_{2max} (1-min) and anaerobic threshold (4-min) × 5 repetitions, alternating continuous model; HIT₄: 25-min constant-load continuous model, HIT₅: 6 repetitions of 30-sec at 7,5% body weight with 1:7 w/r ratio sprint interval specific HIT model were performed. All participants reached exhaustion at all tested HIT models. N₂O_{RB} method was also used during each HIT sessions to obtain Q, SV and a-vO_{2diff}. Blood lactate was taken at the end of each HIT sessions and post-exercise VO₂ and VCO₂ were measured continuously for 2-h to calculate fat oxidation. After the repeated-measures analyses, possible significant differences were investigated by post-hoc LSD or Wilcoxon test and effect size. T_{spent} above 95% of VO_{2max} was higher in HIT₂ session than other exercise modalities (p<0.05) (Figure-1). However, amongst all protocols T_{spent} above 90% of VO_{2max} were not statistically different amongst exercise modalities, except HIT₅ (p>0.05); T_{spent} at VO_{2max} was lowest in HIT₅ (p<0.05). T_{spent} at Q_{max} was higher in HIT₂ and HIT₃ sessions than HIT₁, HIT₂ and HIT₅ (p<0.05) (Figure-2). T_{spent} at SV_{max} was higher in HIT₃ and HIT₄ modalities than HIT₁ and HIT₂ (Figure-3). T_{spent} at 95% of HR_{max} was higher in HIT₂ session than other exercise modalities (p<0.05). T_{spent} at a-vO_{2diff max} was higher in HIT₁ and HIT₂ than

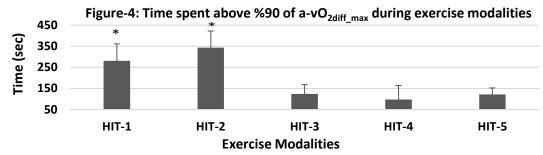


HIT₃, HIT₄ and HIT₅ (p<0.05) (Figure-4). Maximal lactate and maximal post exercise fat oxidation were attained in HIT₅ session (p<0.05). These results show that different exercise modalities reaching similar VO_{2max} levels may be effective in the development of central or peripheral components associated with VO_{2max} . It may be said that continuous HIT modalities seems to have a higher potential to improve central part of VO_{2max} , while intermittent HIT modalities seems better for peripheral one.

Keywords: Aerobic power, maximal oxygen consumption, nitrous-oxide rebreathing, performance, stroke volume



*: Higher t_{spent}@VO_{2max} than other modalities, p<0.05.


Figure-2: Time spent above %90 of Q_{max} during exercise modalities

*: Lower $t_{spent}@Q_{max}$ than HIT₃ and HIT₄ modalities, p<0.05.

*: Higher t_{spent}@SV_{max} than HIT₁ and HIT₂ modalities, ES=0.59, 0.63 respectively; ¥: Higher t_{spent}@SV_{max} than HIT₁ and HIT₂ modalities, ES=0.61, 0.50 respectively.

*: Higher $t_{spent}@a-vO_{2diff_max}$ than HIT₃, HIT₄ and HIT₅ modalities, p<0.05.